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Backpropagation



● We want the neural network to learn how to correctly 
predict the output given the input

● To do this, we need to update the weights of each neuron 
in each layer

Weight Updates



1. We feed a training instance into the NN
2. Measure the output error of our prediction with respect to 

the label
3. Compute how much each neuron in the previous hidden 

layer contributed to each output neuron’s error
4. Repeat step 3 until we reach the input layer
5. Perform gradient descent on all the weights using the 

errors

Backpropagation (BP) Algorithm



Backpropagation Algorithm



Hyperparameters



● Deeper networks more efficiently 
○ model complex functions than shallow networks
○ generalize to new datasets

● It’s a good idea to gradually increase hidden layers until 
the model starts overfitting 

Number of Hidden Layers



● One common practice is to form a funnel: there are fewer 
and fewer neurons at each layer

● Or you can just have the same number of neurons at each 
layer

● You get more bang out of your buck by increasing number 
of layers than you do by increasing number of neurons 

Number of Neurons Per Hidden Layer



Problems With Training NNs



● Vanishing gradient problem: during BP, the gradients of 
updates can get smaller and smaller. Update weights may 
stop changing and training will not converge.

● Exploding gradient problem: during BP, gradients may 
grow bigger and bigger and the algorithm diverges  

Vanishing / Exploding Gradients



● Xavier and He initialization
○ Initialize the weights according to a normal or uniform 

distribution that depends on the input and output sizes
● Use a non-saturating activation function 

Solutions



● Just before the activation function, we can perform batch 
normalization

● This involves zero-centering the mean, normalizing the 
input, then scaling and shifting the results using two new 
parameters per layer

● The mean and standard deviation is evaluated on the 
current mini-batch 

Batch Normalization



Ways To Improve Training



● Instead of training a large NN from scratch, you can find 
an existing NN that accomplishes a similar task and then 
reuse the lower layers of that NN

● It is generally a good idea to freeze the transferred 
weights because it makes the NN easier to train

Transfer Learning



● When you don’t have a lot of data, you can pre-train your 
model on unlabeled data using an unsupervised NN, and 
then transfer those weights 

● You can also pre-train your model on a different task 
where data is easily available, and then transfer some 
weights

Pre-training



● Instead of using simple gradient descent, we can use 
different optimizers to speed up training

● The Adam optimizer generally works better than most 
other optimizers, although you may want to experiment 
with the other optimizers

● You can also trying learning rate scheduling, where the 
learning rate changes over time

Faster Optimization



Faster Optimizers



● Early stopping
● L1, L2 regularization
● Dropout

○ At every training step, each neuron has a probability of 
being unused

● Data augmentation
○ Create more data from the data we already have

Regularization



Questions to Answer
1. How many neurons do you need in the output layer to classify whether an 

image is a dog or a cat? What about trying to what digit an image is (digits 0 
to 9)?

2. Is it okay to initialize all the weights to the same value as long as that value is 
selected randomly using He initialization?

3. If your neural network is overfitting, how would you tweak hyperparameters to 
reduce overfitting?

4. Why would you use a logistic activation function when performing 
classification tasks?



Questions to Answer
1. When transfer learning, what layers do you NOT want to transfer over?
2. When transfer learning, why do you think freezing the transferred layers make 

it easier for the neural network to train?
3. Does transfer learning work when you are using layers trained on a task that 

is very different from the task that you are trying to solve?
4. Does dropout slow down training? Does it slow down inference?


