
Training Neural Networks

1. Backpropagation
2. Hyperparameters
3. Problems With Training NN
4. Ways To Improve Training

Backpropagation

● We want the neural network to learn how to correctly
predict the output given the input

● To do this, we need to update the weights of each neuron
in each layer

Weight Updates

1. We feed a training instance into the NN
2. Measure the output error of our prediction with respect to

the label
3. Compute how much each neuron in the previous hidden

layer contributed to each output neuron’s error
4. Repeat step 3 until we reach the input layer
5. Perform gradient descent on all the weights using the

errors

Backpropagation (BP) Algorithm

Backpropagation Algorithm

Hyperparameters

● Deeper networks more efficiently
○ model complex functions than shallow networks
○ generalize to new datasets

● It’s a good idea to gradually increase hidden layers until
the model starts overfitting

Number of Hidden Layers

● One common practice is to form a funnel: there are fewer
and fewer neurons at each layer

● Or you can just have the same number of neurons at each
layer

● You get more bang out of your buck by increasing number
of layers than you do by increasing number of neurons

Number of Neurons Per Hidden Layer

Problems With Training NNs

● Vanishing gradient problem: during BP, the gradients of
updates can get smaller and smaller. Update weights may
stop changing and training will not converge.

● Exploding gradient problem: during BP, gradients may
grow bigger and bigger and the algorithm diverges

Vanishing / Exploding Gradients

● Xavier and He initialization
○ Initialize the weights according to a normal or uniform

distribution that depends on the input and output sizes
● Use a non-saturating activation function

Solutions

● Just before the activation function, we can perform batch
normalization

● This involves zero-centering the mean, normalizing the
input, then scaling and shifting the results using two new
parameters per layer

● The mean and standard deviation is evaluated on the
current mini-batch

Batch Normalization

Ways To Improve Training

● Instead of training a large NN from scratch, you can find
an existing NN that accomplishes a similar task and then
reuse the lower layers of that NN

● It is generally a good idea to freeze the transferred
weights because it makes the NN easier to train

Transfer Learning

● When you don’t have a lot of data, you can pre-train your
model on unlabeled data using an unsupervised NN, and
then transfer those weights

● You can also pre-train your model on a different task
where data is easily available, and then transfer some
weights

Pre-training

● Instead of using simple gradient descent, we can use
different optimizers to speed up training

● The Adam optimizer generally works better than most
other optimizers, although you may want to experiment
with the other optimizers

● You can also trying learning rate scheduling, where the
learning rate changes over time

Faster Optimization

Faster Optimizers

● Early stopping
● L1, L2 regularization
● Dropout

○ At every training step, each neuron has a probability of
being unused

● Data augmentation
○ Create more data from the data we already have

Regularization

Questions to Answer
1. How many neurons do you need in the output layer to classify whether an

image is a dog or a cat? What about trying to what digit an image is (digits 0
to 9)?

2. Is it okay to initialize all the weights to the same value as long as that value is
selected randomly using He initialization?

3. If your neural network is overfitting, how would you tweak hyperparameters to
reduce overfitting?

4. Why would you use a logistic activation function when performing
classification tasks?

Questions to Answer
1. When transfer learning, what layers do you NOT want to transfer over?
2. When transfer learning, why do you think freezing the transferred layers make

it easier for the neural network to train?
3. Does transfer learning work when you are using layers trained on a task that

is very different from the task that you are trying to solve?
4. Does dropout slow down training? Does it slow down inference?

